

Knowing what students know

is the starting point of good instruction

- implies a change in assessment:

Assessing (MLD) students' mathematical potential

- implies a change in teaching:

Building on what (MLD) students already know

Examples

IMPULSE project

1. Offering students problems in which they can show their competence

1a. Within curriculum: Subtraction problems
1b. Beyond curriculum: Combinatorial problems

FaSMEd project

2. Offering students optional auxiliary tools: Percentage problems
"Going across the grain" study by Watson (2002)
3. Advanced mathematical thinking by low attaining students

Example 1a

Offering students problems by which they can show their competence
Subtraction problems that elicit strategies

Example 1a

Study with Special Education students

56 students from 14 classes in SE school
8-12 years old
Mathematics level Grade 2

$$
\begin{aligned}
& \text { Students who are weak in } \\
& \text { mathematics should be taught just } \\
& \text { one procedure: Subtraction should } \\
& \text { be solved by Direct Subtraction and } \\
& \text { not by Indirect Addition }
\end{aligned}
$$

Example 1a

62 euro

12345567890

\square

29 euro discount

Taking Away Context

Example 1a

space for 51 cards

12314567889 0

49 are already included

Example 1a

IA use and problem format

Example 2a

IA use and numbers involved

Example 1a

Conclusions

o SE students can make spontaneous use of IA

- DS 63\%
- IA 34\%
- Average IA use per student 4.6 (max $0, \max 8)$
o SE students are rather flexible in applying IA
o SE students are quite successful when applying IA
- DS 51\% correct
- IA 68\% correct

Example 1b

Offering students problems in which they can show their competence:
Combinatorial problems

Example 1b

Research question:

Can special education students solve combinatorial problems?

Participants:

84 students (age $M=11.1$) from 5 SE schools 76 students (age $M=9.4$) from 5 RE schools Mathematics levels Grade 2-5

Instrument:

6 combinatorial problems in ICT environment

Example 1b

Correctly solved problems	
SE students	RE students
56%	57%

Example 1b

Strategy use:

- systematic
- semi-systematic
- non-systematic

Example 1b
SE Students

Frequency (\%) of strategy use

RE Students

- Non-systematic
- - - Semi-systematic
...o.. Systematic

Example 2
 Offering students optional auxiliary tools:
 Percentage problems

Example 2

FaSMEd $_{\text {î }}^{\text {FaSM }}$

Digital Assessment Environment

- Web-based
- Monitoring function
- Problems based on key competencies
- Auxiliary tools

Six problems on percentage
Grade 6 teacher:
"Duncan belongs to the low-level stream in my class and now he did three of the six problems correctly!"

Example 2

Problem 1
When a battery is full, it will work 120 hours.
It is still charged for 40%.
For how many hours will this battery still work?
Answer: ... hours

Example 2

Problem 1

When a battery is full, it will work 120 hours.
It is still charged for 40%.
For how many hours will this battery still work?
Answer:... hours

Example 2

Problem 1
When a battery is full, it will work 120 hours.
It is still charged for 40%.
For how many hours will this battery still work?
Answer:... hours

Example 2

Problem 1
When a battery is full, it will work 120 hours.
It is still charged for 40%.
For how many hours will this battery still work?
Answer:... hours

Example 2

Problem 1
When a battery is full, it will work 120 hours.
It is still charged for 40%.
For how many hours will this battery still work?
Answer: 48 hours

Example 2

Problem 2
A cell phone costs 70 euro. You get a discount of 20%.
What do you have to pay?
Answer 66 euro
Wrong answer, but what do the auxiliary tools tell the teacher?

Example 2

Problem 2
A cell phone costs 70 euro. You get a discount of 20%.
What do you have to pay?
Answer 66 euro

Example 2

Problem 5
In 24 minutes the battery is charged for 75%.
What is the total charging time?
Answer: 30 minutes

> Wrong answer, but what do the auxiliary tools tell the teacher?

Example 2

Problem 5

In 24 minutes the battery is charged for 75%.
What is the total charging time?
Answer 30 minutes

Example 3

Advanced mathematical thinking by low attaining students

Example 3

"Going across the grain" study by Watson (2002)
" 'Low attaining students' are generally classified [...] on the basis of accumulated incompetence in tests and other written work."

Deficiency-imasen approach

Proficiency-based approach

Example 3

$23 \times 7=161$
"All could do this after some thought, although their previous patterns working down the page did not help them in this case."

- identify and use patterns
- work with abstractions and relations

Research on MLD needs a proficiency-based approach

It is time to reveal what students with MLD know, rather than what they do not know

m.vandenheuvel@fi.uu.nl

